PHYSICAL REVIEW E

VOLUME 48, NUMBER 4

OCTOBER 1993

Macroscopic equilibrium from microscopic irreversibility in a chaotic coupled-map lattice

Jonathan Miller* and David A. Huse
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 8 March 1993)

We study the long-wavelength properties of a two-dimensional lattice of chaotic coupled maps, in
which the dynamics has Ising symmetry. For sufficiently strong coupling, the system orders ferromag-
netically. The phase transition has static and dynamic critical exponents that are consistent with the Is-
ing universality class. We examine the ordered phase of the model by analyzing the dynamics of domain
walls, and suggest that the dynamics of these defects allow a complete characterization of the long-
wavelength properties of this phase. We argue that, at large length scales, the correlations of this phase
are precisely those of an equilibrium Ising model in its ordered phase. We also speculate on what other
phases might occur in more general such models with Ising symmetry.

PACS number(s): 05.45.+b, 05.50.+q

INTRODUCTION

Systems of coupled chaotic maps have lately received
special attention, because of the possibilities they offer for
a greater understanding of dissipative spatially extended
systems with many degrees of freedom [1]. In particular,
one might hope to achieve a description of long-
wavelength, long-time phenomena, analogous to those
which we have acquired for equilibrium systems. There,
thermodynamics and equilibrium statistical mechanics
identify for us a small set of quantities that characterize
what are believed to be the essential long-wavelength
features of an interacting, many-body systems. Central
to developing such a “hydrodynamic” description of a
system is the observation that its configuration space and
dynamics may be very complicated on a microscopic lev-
el; nevertheless, once we coarse grain the system and look
only at appropriate averages, the number of degrees of
freedom is effectively reduced, from O(N), where N is the
number of microscopic degrees of freedom, to just those
slow modes, conserved fields, or order parameters that
participate in the long-wavelength, long-time dynamics.

One may ask whether a similar description of extended
nonequilibrium dissipative systems is possible. An ad-
vantage of coupled chaotic maps in studying this question
is that we may readily control microscopic properties of
the system, by choosing appropriate maps and couplings,
to determine the order parameters that will be relevant at
large scales. Provided the interactions are local, one ex-
pects that nontrivial long-wavelength properties at or
near the steady state will reflect either conservation laws
or symmetries of the system.

An essential feature of a long-wavelength, coarse-
grained description of a deterministic chaotic dynamics is
an understanding of how the local chaos couples to the
long-wavelength dynamics, a question that has been dis-
cussed recently by a number of authors [1,2]. The
coarse-grained dynamics consists of a deterministic local
dynamics of the long-wavelength modes, plus a noiselike
term due to forcing of long-wavelength modes by chaotic
short-wavelength modes (“local chaos”) that are not ex-
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plicitly included in the coarse-grained description.
Zaleski [2] considers a partial differential equation in one
space and one time dimension, the Kuramoto-
Sivashinsky (KS) equation. He argues that its long-
wavelength dynamics is statistically identical to a sto-
chastically driven Burgers’ equation. This implies that
the local chaos in the KS equation decorrelates from the
long-wavelength dynamics, thus acting like a stochastic
noise source. Bourzutschky and Cross [1] (BC) examine a
discrete space-time system: a lattice of coupled chaotic
maps whose local dynamics yield a conservation law.
Once again, it emerges that the correlations of short-
wavelength chaos with long-wavelength dynamics are
unimportant: Local chaos can be modeled as stochastic
noise. The general validity of this observation in a hydro-
dynamic description of a chaotic system is, we believe, an
interesting question.

A natural approach to characterizing nonequilibrium
systems would be to extend concepts useful in the equilib-
rium case, as suggested by Hohenberg and Shraiman [3].
The work of BC suggests, for example, that their
coupled-map lattice develops a “‘chemical potential” for
the conserved quantity. In a related effort to discern the
applicability of statistical-mechanical reasoning to none-
quilibrium systems, Shraiman et al. [4] study the com-
plex Ginzburg-Landau partial differential equation in two
space-time dimensions. The “order parameter” is a com-
plex scalar field and has a continuous symmetry under ro-
tations about the origin in the complex plane. The sym-
metry suggests the importance of defects (“space-time
vortices”) in characterizing the dynamics, and Shraiman
et al. present numerical evidence that one may character-
ize the chaotic phases of this model by the presence or
absence of defects.

An additional basic question involves the relevance of
the Gibbs free energy to a dynamical system with many
degrees of freedom. A free energy is ordinarily expected
to describe a system that satisfies detailed balance: the
rate of transition from any state of the system to any oth-
er state coincides with the rate of the inverse transition.
Most often, arguments for the applicability of a Gibbs en-
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semble rely upon the assumption of detailed balance; its
absence is ordinarily offered as ipse facto evidence for the
nonequilibrium character of the system in question. On
the other hand, it is generally appreciated that detailed
balance is not necessary for a Gibbs-like description to
apply; all that is required is that some coarse-grained
quantities ; obey a Langevin dynamics [5]:
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where

(&i(r,0)5;(r',1')) =2Q,;8(r—r)8(t —1') , (2)

Q;; is the symmetric part of M;;, and F(¢;) denotes the
reduced free energy (i.e., the free energy divided by the
temperature). We feel that it should be of some interest
to understand when it is to be expected that an irreversi-
ble dynamics, in particular a dynamics that does not
satisfy detailed balance, nevertheless satisfies (1) and (2)
for nontrivial coarse-grained quantities.

A natural candidate for an interesting coarse-grained
dynamics is the dynamics of defects. A recent proposal
for the dynamics of turbulent fluids at wavelengths large
compared to some microscopic cutoff relies on an as-
sumption of equilibrium, and the corresponding defects-
vortices play a central role in this theory [6]. Other
workers have also studied the complex Ginzburg-Landau
equation, with an emphasis on the statistical characteri-
zation of the defect density and its fluctuations [7].

In our work, we focus on these general issues by look-
ing at a simple, discrete space-time coupled-map system
with a discrete symmetry: a nonequilibrium, determinis-
tic, and chaotic analog of the two-dimensional Ising mod-
el. We argue that the symmetry enables us to character-
ize the possible phases in this model, and in a special
phase permits a quantitative description of the long-
wavelength dynamics of the system. The defects we
study in the ordered phase are the domain walls and
droplets of flipped “spins” that represent the dominant
long length-scale fluctuations, much as in the equilibrium
Ising model. We argue that the long-wavelength dynam-
ics of the domain walls in one ordered phase of our
coupled-map system is actually identical to that of an
equilibrium Ising model.

DROPLET MODELS

The nontrivial character of the ordered phase of the
equilibrium two-dimensional Ising model has been well
established (8], but is generally unappreciated. In partic-
ular, the equilibrium model displays certain universal
features that follow only from the Ising symmetry of the
microscopic Hamiltonian. Since we shall apply to our
nonequilibrium system arguments analogous to those
used for the equilibrium Ising model, we briefly review, in
this section, the way droplets determine long-wavelength
correlations in the low-temperature phase of the Ising
model, in the absence of a magnetic field or any conserva-
tion laws.

Defect dynamics in the two-dimensional Ising model
may be described by a reduced free-energy functional F:
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FX)= [ 7(6(X(s))ds , (3)

where X(s) represents the positions of the domain walls
in the system, as parametrized by arc length s. The in-
tegral on ds is over all domain walls in the system. 6
denotes the angle of the local normal to the domain wall
at X with respect to the lattice axes, and 7(8) denotes the
reduced surface tension. The surface tension may be
computed from a microscopic Hamiltonian, but here we
take it as a phenomenological parameter. We assume
spatial inversion is a symmetry of the system, so
7(0)=7(60+). By means of the Wulff construction [9],
7(0) generates an item of physical interest, the equilibri-
um crystal shape.

An elementary variational calculation yields a
Langevin equation of the form (1) for the domain-wall dy-
namics:

7= " D(O{oOk(s)} +v(0,s,1) , )
where we have introduced a local, §-function-correlated,
stochastic noise, v, of amplitude I'(6):

(W(0,s,0)v(&',s",t")) =T(0)8(s —s")d(t —1') , (5)

X, denotes the normal component of the domain-wall
coordinate, the reduced surface stiffness o(6) is given by

_ d*r(0)
0(9)—7‘(9)4‘? y (6)

and k(s) denotes the curvature of the domain wall at s.

In the ordered phase of a model governed by the free
energy #, the spin-spin correlation functions acquire a
nontrivial character determined by the droplet fluctua-
tions. The droplet fluctuations play a special role because
the only way two well-separated spin (i.e., spins with a
spatial or temporal separation much larger than the
correlation length or time, respectively) may develop any
correlation is when they are both contained in the same
droplet [8]. In this way, the broken symmetry is reflected
in the low-temperature phase by anomalous decay laws
for the correlations. For example, the long-distance,
equal-time correlation between spins y behaves as [8]

(y(x,)y(x,)), <exp{—27(0)r} /r?, (7)

where the subscript c refers to the connected part of the
correlation function; r = |x, —x,|, and 6 denotes the angle
between x; —X, and the lattice axes.

In summary, it is the properties of the antiphase drop-
lets that determine the long-distance or long-time hydro-
dynamic behavior of the ordered phase of the two-
dimensional Ising model. These droplet properties, in
turn, are traditionally derived from the fundamental
starting point of a Hamiltonian energy functional for the
model [8]. We shall argue that one may in fact view the
droplets themselves as fundamental, giving rise to the
features described above even in the absence of a Hamil-
tonian energy for the system.
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THE MODEL

The dynamical system we study consists of a two-
dimensional (2D) square lattice of coupled, chaotic scalar
maps. The map ¢(y), which we require to be the same at
every site, has at least two essential properties: (1) chaos,
that is, a single uncoupled map has a positive Lyapunov
exponent; and (2) odd parity, ¢(—y)=—¢(y). The map
that has received most of our attention is a tent map, il-
lustrated in Fig. 1:

—2—3y for —1sy=-—1
3y for —{=<y=<1 (8)
2—3y for +<y=1.

()=

The discrete-time dynamics of the coupled system is

yiTl=¢rH+g 3 {ey))—dy))} , ©)
J

where the superscript indexes the time, the subscript the
spatial coordinate, and g is the coupling constant. The
sum is over all four nearest neighbors, j, of site i. We re-
quire that the real numbers y, at each site take only
values in the interval [ —1,1], and to maintain this condi-
tion we restrict the coupling to the range 0<g <1. We
do not add any external noise, although we shall later
briefly discuss the effect such a term might have.

For g =0, it is clear that this array of maps is chaotic,
and in fact it is ergodic on the full configuration space
[—1,1]", where N is the number of sites, visiting all
configurations with uniform probability in its long-time
statistical steady state. For arbitrary g, if all sites have
precisely the same value of y they will remain the same;
however, these uniform states are unstable and are of
zero measure in the full configuration space.

For g >0, the coupling induces correlations in the sta-
tistical steady state, which may be studied numerically.
In particular, we find that the array has a ferromagneti-

o(y)
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<

FIG. 1. The function ¢(y) of Eq. (8) that represents the tent
map studied in the bulk of this paper.
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cally ordered steady state for 0.2054 Sg <0.24. That is,
in this ferromagnetic phase the long-distance correlations
(y;yx ), averaged in the steady state, are nonzero in the
limit of large separations between points i and k. In the
paramagnetic phase the statistical steady state is ap-
parently independent of the initial condition for initial
conditions chosen randomly on [y i ,Vmax)> With
—1=yin <Vmax =1. In the ferromagnetic phase for
large arrays this attractor effectively splits into two
equivalent attractors, one with positive and one with neg-
ative magnetization. The frequency of transitions be-
tween these two attractors then appears to vanish ex-
ponentially with increasing array size.

We have checked that the array dynamics is chaotic
for couplings in both the paramagnetic and ferromagnet-
ic regimes, by examining the largest Lyapunov exponent,
Amax(g), determined by the rate of divergence of two ini-
tially nearby configurations. For vanishing coupling, the
independent site dynamics of (8) obviously yields
Amax(0)=In3, whereas for larger coupling A, varies
continuously with g, always remaining larger than 0.5.
Thus, our array undergoes an ordering transition between
two chaotic phases. The paramagnetic phase per se being
presumably of little interest at long wavelengths, the
remainder of the paper primarily concerns ordered
phases and phase transitions.

A CRITICAL POINT

The immediate question arises as to the universality
class of the phase transition between the paramagnetic
and ferromagnetic phases discussed above. Bennett and
Grinstein [10] and Grinstein, Jayaprakash, and He [11]
have argued that the ferromagnetic critical point of a
translationally invariant system with Ising symmetry
generically ought to fall within the Ising universality
class for both statics and dynamics. Their argument re-
lies on the assumption of a Langevin description for the
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FIG. 2. The mean-square magnetization, scaled by system
size for g <g, and raised to the appropriate power [— % =—=1/y
for g <g., and 4=1/(2B) for g >g.] so that the quantities plot-
ted should vanish with a finite, nonzero slope at the critical
point g, if the phase transition is in the Ising universality class.
The smooth curves show that these data are consistent with this
hypothesis.
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FIG. 3. Growth of the mean-square magnetization with time
at g =g, ~0.2054, after starting in a random initial state. The
straight line is drawn with slope y/zv=~0.81, the long-time
growth exponent for this quantity at the critical point of the 2D
Ising model.

coarse-grained dynamics:
yi=0:({y;D+n:({y:}, 1), (10)

where y; is the local field corresponding to coarse-grained
spins, Q describes the deterministic part of the dynamics,
and 7 represents the noise. Grinstein, Jayaprakash, and
He [11] argue that contributions to Q that represent local
interactions, but cannot be derived from a Hamiltonian,
are irrelevant at the critical point (within a
renormalization-group € expansion around d =4), as are
local correlations of the noise with the state of the sys-
tem. Bennett and Grinstein verify this claim for a dy-
namics subject to external noise; in our system the noise
is due to the deterministic local chaos.

We have checked that the dynamics of our array yields
a phase transition at g, ~0.2054 consistent with the two-
dimensional Ising universality class and the arguments of
Refs. [10] and [11]. We measured the ‘“magnetization™
density m =(1/N)3;sgn(y;) in numerical simulations of
the coupled-map system, where N is the number of sites
of a square lattice with periodic boundary conditions.
The mean-square magnetization in the steady state,
{m?), varies in a manner consistent with the appropriate
power of |g —g.| expected from the 2D Ising universality
class, on both sides of the transition (Fig. 2). To confirm
the dynamical universality, we have evaluated the growth

of (m?(t)) with time for the critical coupling,
g=0.2054~g., starting from a random initial
configuration. As displayed in Fig. 3, the long-time

growth exponent is once again consistent with Ising
universality. Here one sees that deviations from the
asymptotic behavior are quite apparent at early time and
thus short length scales. We also examined the finite-size
scaling of (m*)/{m?)? near g, and again observe
behavior fully consistent with Ising universality for large
enough sizes.
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AN ORDERED PHASE

Whereas the arguments discussed in the previous sec-
tion [10,11] suggest that we understand quite generally
the critical point of this kind of Ising system (provided
the Langevin description obtains), we have until now
achieved no such understanding of the ordered phase. In
the special case that a local dynamics is (microscopically)
reversible, detailed balance implies that the system is in
fact governed by the free energy of a generalized Ising
model: that is, by some local spin Hamiltonian with Ising
symmetry [11]. The array is then a “kinetic Ising mod-
el,” a type of model that has received much study [12].
Our model does not fall into this special category, since
there is no reason for our dynamics to be reversible at
small scales. Indeed, detailed balance entails that for any
coarse graining of system configurations, the number of
transitions from one state to another, per unit time, coin-
cides with the number of transitions in the opposite direc-
tion. There is no reason for the single-site map ¢ to obey
such a condition in the absence of coupling, and we have
numerically verified, for a variety of coarse grainings in-
volving small numbers of sites, that the small-scale dy-
namics deviates substantially from detailed balance of its
transition rates.

Nevertheless, we may characterize the large-scale dy-
namics in our more general situation. The dynamics of
domains and domain walls (interfaces) provide a natural
route to a long-wavelength description of the ordered
phase. Once we coarse grain over small distances (at
least of order of the correlation length), domains and
sharp interfaces are the only features that survive. Just
as in the equilibrium case one finds that droplet fluctua-
tions, whose dynamics are governed by an interface Ham-
iltonian, provide the only contribution to long-
wavelength properties; we claim that a droplet picture,
based solely on domains and their fluctuations, yields a
quantitative description of long-wavelength properties.

Three components comprise our argument: (1) a
Langevin description of the interface dynamics is valid at
long wavelengths; (2) this Langevin description is precise-
ly that of the interface dynamics of some generalized Is-
ing model; (3) large droplet fluctuations do in fact spon-
taneously occur in the ordered phase of our model. We
conclude that the long-wavelength properties of the or-
dered phase of this model are precisely those of an (equi-
librium, generalized) Ising model. However, we will ar-
gue below that within the more general class of coupled
maps with Ising symmetry, there exist, in addition, other
regimes with interfaces, in which some or all of the above
three conditions are violated.

A. Domain-wall dynamics

To understand the general case, it is useful to examine
a particular coarse graining of the dynamics: the
Langevin dynamics of interfaces, or domain walls. Even
in the absence of defects generated spontaneously by the
dynamics of the array (that is, even when droplets are not
spontaneously nucleated), it is nevertheless possible to in-
quire about the dynamics of domain walls, by applying
appropriate boundary conditions. In particular, we apply
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periodic and antiperiodic boundary conditions in orthog-
onal directions, to establish an interface whose mean an-
gle 0 with respect to the lattice axes may be fixed at an
arbitrary value (Fig. 4). The ferromagnetically ordered
domains on either side of the interface have opposite
magnetizations. Given such boundary conditions, we ap-
ply a Langevin description to the fluctuations of the in-
terface about its mean position. It is straightforward to
write down a Langevin equation for the (time-dependent)
deviation of the interface from a straight reference posi-
tion, the fluctuations of which we denote by A (x,¢)

O o VA myx,1) (11)

ot
where o0 is a constant describing interfacial resistance to
bending, and 7, is a stochastic noise arising from the lo-
cal chaos. This equation consists of the lowest-order con-
tributions invariant under lattice translation and inver-
sion, and spin inversion y<«>—y. Dimensional analysis
shows that any further local interactions or local correla-
tions between noise and interface shape are irrelevant at
long wavelengths, provided the noise has only short-
range temporal and spatial correlations.

This Langevin description may be checked by numeri-
cal examination of the scaling of mean-square interface
displacement with interface length following from (11),
which is well known for Ising models [8]:

([h(O)—h(x)])=x , (12)

for large distances x along the interface. We have
checked this scaling for the ordered phase of our
coupled-map lattice for several boundary conditions, an-
gles, and microscopic algorithms for finding the interface
[13]. Our results are consistent with Eq. (12).

B. Droplet dynamics

We may extend this kind of analysis to the dynamics of
droplets, or connected regions of inverted (coarse-
grained) spins surrounded by a closed interface. We ex-

>

X

FIG. 4. The geometry for the measurement of the mean-
square interface height difference as a function of the interface
length. The boundaries of the rectangular piece of lattice stud-
ied are oriented at a chosen angle with respect to the lattice
axes. The two sides are joined by periodic boundary conditions
(P), while the top and bottom are joined by antiperiodic bound-
ary conditions (A4). In the ordered phase this forces the inter-
face to be present.
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amine length scales where the boundary of a droplet is
well described by a (one-dimensional) curve. The results
of the preceding subsection, showing that the amplitude
of the transverse interface fluctuations grows only as the
square root of the interface length, suggests that such
length scales are attained by sufficiently large droplets.
We use a local coordinate parametrization where X is a
position vector giving coordinates of the curve
parametrized by s and n is the normal to the curve. We
may describe the curve completely within this local pa-
rametrization by means of 6(s,?) and its derivatives
d0/ds,d*0/ds?, ..., where 0 represents the angle of n
with respect to the direction of the lattice axes, and s is
the distance along the curve so |dX/ds|=1. It emerges,
again by a dimensional argument, that derivatives of 6
with respect to s higher in order than the first are ir-
relevant at long wavelengths. In terms of the curvature,
k=d0/ds, we write a Langevin equation for the motion
of the curve:

%Zf(@,x)n-f—n(@,x,s,t)n R (13)
where f represents the deterministic part of the coarse-
grained dynamics, and 7 noise from the local chaos.
(Motion of the curve in the direction of the tangent corre-
sponds merely to reparametrization.) We next assume
small curvature to expand the dynamics and noise in
powers of the curvature; powers larger than the first are

irrelevant. Lattice inversion symmetry enables us to
write
f(0,k)=§(0) . (14)

Symmetry under spin inversion requires the distribution
of the noise 7 to be an even function of «, yielding a noise
term with no dependence on curvature to relevant order.
Our Langevin equation then becomes

dX

7={§(9)K+n(9,s,t)}n . (15)
Assuming the effective noise has only short-distance
correlations, we have

(n(@,s,t)n(@’,s',t’))=2F2(9)§(s —s5)8(t—1¢t"), (16)

with T'%(0) the angle-dependent noise intensity. Under
rescaling of space and time ¢ —b?t; X —bX, we obtain

dX ,
o lge)ﬁ;—f’/—z }n ) (17)

which corresponds to the expected relative scaling of the
dynamics and noise in the 2D Ising model.

The validity of the Langevin description may be tested
further by examining the dynamics of the decay of large
droplets. We introduce large droplets by inverting a con-
vex domain of spins in a lattice that has relaxed to its
steady state, and observe their decay in time. The
Langevin description entails that the mean area of a large
droplet, D, vary linearly with time:

(D(0)—D(t))~t . (18)

Once again, we have observed this behavior numerically
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(Fig. 5). As the droplets diminish to a characteristic ra-
dius comparable to the correlation length, we no longer
expect (18) to apply, yielding, for small deviations from
the mean magnetization, the saturation evident in Fig. 5.
In fact, the Langevin description (15) is precisely that
of an equilibrium Ising model [8]. We may exhibit this
identification by factoring out the angular dependence of
the noise in the Langevin equation (15):
dX (8)
r

——=T(6) 0)

” k+v(s,t) ]n N (19)

where I'(60) is defined as in Eq. (16), and the noise v is 8-
function correlated in s and ¢, but now is intensity has no
angular dependence. Defining the reduced stiffness
o(0)=£(0)/T°(8), we may rewrite (15) as

dx
. =r(9)[ 5F

— >ty

5X ) (20)

where the reduced free energy ¥ is defined as in (3). I'(9)
is a kinetic coefficient.

While (3) is the coarse-grained free energy of an Ising
model, the possibility remains that the reduced surface
tension 7(6) may exhibit singularities as a function of 6,
or be nonpositive, neither of which occurs in a two-
dimensional Ising model with short-range interactions,
except at zero temperature. We have estimated o(0) for
several 0 by examining the amplitude of interface fluctua-
tions in the geometry of Fig. 4. We have used a variety of
methods for measuring the interface position, both in-
cluding and neglecting overhangs; all methods yield (re-
duced) stiffnesses which agree quantitatively. Further-
more, the relative stiffnesses appear to increase smoothly

0.9 T T T T T

0.5 ] 1 1 | - 1
0 500 1000 1500
t

FIG. 5. Decay of droplet area as a function of time. A
90X 90 lattice is first equilibrated in the positively magnetized
ordered phase with periodic boundary conditions, and then a
circular domain of spins of a given total area is inverted at time
t=0. The return of average total signed magnetization
(m())=(1/N)3,;{sgn(y/)) to its equilibrium value, in this
case {(m (o)) ~0.831, is shown as a function of time. The plot
is an average of 200 such droplet events with g =0.223.
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and monotonically as 6 varies from O to 7 /4, consistent
with both o(60) and 7(0) being smooth, positive functions
[14].

The factorization carried out in (20) is not possible for
an arbitrary Langevin equation. The most general for-
mulation of a relaxational model may be described by (1),
as we indicated above. In our case, the i,j in (1) index the
modes 6. The only contribution to M,; at long wave-
lengths is diagonal in i, j, because the coupling among dis-
tinct angular modes is irrelevant at long wavelengths, as
is apparent from (15). The diagonal character of M;; in
this case may be related to the geometrical nature of the
dynamics; we have no general understanding of when it is
to be anticipated.

C. Droplet nucleation

We have argued in the previous subsection that the
(bulk) behavior of the domain walls is determined by an
Ising free energy. Once sufficiently large droplets are
created, we expect their evolution to be determined by
the Langevin dynamics of the domain walls which bound
a droplet. For a Hamiltonian Ising model at nonzero
temperature, ergodicity guarantees the creation of arbi-
trarily large droplets; however, we cannot in general ex-
pect dynamical models of the form we are studying to be
ergodic.

So far, we can only address the emergence of arbitrari-
ly large droplets empirically; we have no analytic argu-
ment for the occurrence of droplets sufficiently large that
the Langevin dynamics will govern the evolution of their
domain walls. The best we can do is to show numerically
that there is no cutoff in droplet size up to the largest
spontaneously generated droplets we can obtain within
reasonable simulation times. Unfortunately, the proba-
bility of a droplet of area D is expected to be exponential-
ly rare (more precisely, scaling as exp{ —7,,D!/?}). Both
for our model and for equilibrium Ising models where
droplet properties have been established by rigorous ar-
gument [15], finite-size effects are so severe that we are
unable to obtain spontaneously generated droplets
sufficiently large that they fall into a regime where the
Langevin argument clearly applies. In particular, we are
unable to obtain spontaneously generated droplets of the
size we earlier artificially introduced in order to examine
the dynamics of droplet decay. A direct comparison of
our model and, say, the usual nearest-neighbor ferromag-
netically coupled Ising model is further hampered by the
fact that there is no particular reason why the effective
local couplings for our model ought to be either nearest
neighbor or exclusively ferromagnetic, and no expecta-
tion that any finite-size corrections should be the same
for both models. In fact, our model does exhibit a
significant amount of short-range antiferromagnetic or-
der, in addition to its long-range ferromagnetic order.

Consequently, we rely on the smoothness of the decay
in frequency of droplets as a function of their size. We
measured the relative frequency of occurrence of drop-
lets, which we defined for numerical purposes as connect-
ed clusters of antiphase spins [16]. If there existed a
cutoff in droplet size, we would expect our curve to be
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FIG. 6. Histogram of probability of connected droplets of
area D. At each iteration of a 30X 30 lattice, all connected
droplets are found and counted. The fraction of the connected
droplets that have area D is plotted as a function of D on this
semilogarithmic plot. [A “connected droplet” is defined here as
a set of D lattice sites each with sgn(y) opposite to that of the
majority phase, which are connected by nearest-neighbor bonds
and the droplet is surrounded by sites with sgn(y) the same as
the majority phase.] These data are for g =0.223.

sharply truncated. Instead, the observed droplet frequen-
cy decays smoothly into the noise (Fig. 6). We have also
examined equilibrium nearest-neighbor Ising models, and
find similar behavior in droplet frequency; in neither case
have we been able to obtain droplets of sufficient size to
observe exp{—r7, D"} decay with p=1. Rather u ap-
pears to vary continuously from near O to near unity as g
is increased from g, in our coupled-map array, or T is de-

creased from T, in the equilibrium Ising model.
OTHER PHASES

In the preceding sections, we have presented evidence
that our deterministic array has an ordered phase indis-
tinguishable, at long wavelengths, from that of a 2D Ising
model. For the map we have studied above, we believe
we understand the entire phase diagram as a function of
coupling, g; however, if we alter this map, other kinds of
phases are possible. One possible modification is to
change the map function ¢(y) which enters in Eq. (9) as
indicated in Fig. 7, where we have “folded” the peaks of
the simple tent map function of Fig. 1 by some distance
d, keeping the slope |d¢/dy|=3. Provided d is set to
some value d, within the interval L <d, <1, the uncou-
pled map for a single site, which was ergodic for d =0,
has two disjoint chaotic attractors, related by sign inver-
sion. At small coupling our array with d =0 has a single
paramagnetic attractor; for d =d,,, the array has 2% dis-
tinct chaotic attractors, corresponding to the two possible
symmetry-related states for each N independent sites.
Thus one has attractors with complete ferromagnetic or
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FIG. 7. The “folded” map function.

antiferromagnetic order, as well as attractors with static
domain walls in any possible pattern. In this regime the
domain walls are perfectly static and droplets are never
nucleated within any of the domains.

Based upon our identification of defect dynamics as a
basic characterization of the phases of the kind of model
we are studying, we may speculate on what other phases
might occur. First, there could be a phase where the
large-scale domain-wall dynamics remain the same as dis-
cussed above, so all droplets decay away, but the nu-
cleation of large droplets does not occur. In this phase
there would still be only two attactors for the dynamics,
but the fluctuations within the attractors would be limit-
ed to only small droplets or just fluctuations in the mag-
nitudes of the y;. Second, the domain walls could under-
go a sort of roughening transition to a regime where a
long straight domain wall is stationary. Then the system
would have more attractors with such walls present.
Once a straight domain wall is stationary, one can inves-
tigate the dynamics of other structures, such as the
corner of a large domain, a step in an otherwise straight
domain wall, or the intersection of two domain walls.
Phases, which could be distinguished by the mobility or
stationarity of these defects, might exist. Once some sort
of domain-wall corner or intersection is stationary, the
number of distinct attractors will presumably grow as
exp(sN), where N is the number of sites and s is a sort of
entropy density. Thus we could characterize a phase
with s, which will take on the value s =In2 in the phase
with 2V attactors discussed above. An investigation of
these possible phases and the phase transitions between
them, for example as one varies d and g, would be of
much interest.

EXTERNAL NOISE

A well-known, but so far unproven, hypothesis main-
tains that stochastic cellular automata in one dimension
are, in their long-wavelength properties, Ising models,
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provided they are ergodic, and homogeneous in space and
time [17]. Our own conjecture represents more than a
trivial extension of this hypothesis, since the 2D Ising
model displays a number of important features not
present in one dimension. In particular, the 1D model
has only a zero-temperature phase transition; it is
paramagnetic, except at zero temperature where it has
long-range order. In contrast, the 2D Ising model has a
range of temperatures, below 7., for which it has long-
range order, and for which the defects play the dominant
role in determining the correlations. It is on this more
subtle regime, absent in one-dimension, that we have con-
centrated here.

Nevertheless, our arguments suggest that an analogous
hypothesis is probably valid in two dimensions. A sto-
chastic, local noise that reversed the signs of the spins
would create droplets large enough that the Langevin dy-
namics (15) ought to apply. These droplets would be
sufficient to generate 2D Ising correlations in the ordered
phase, even when the deterministic (noise-free) system
does not spontaneously create large droplets [18].

CONCLUSIONS

We have argued that symmetry considerations enable
us to understand the long-wavelength properties of a
class of locally coupled, deterministic, nonequilibrium
system. We have suggested that a rich phase structure
may emerge for the deterministic dynamics of coupled
maps with Ising symmetry. While microscopically ir-
reversible, the dynamics of Egs. (8) and (9) recovers a
sufficient degree of reversibility at large length scales that
it may be viewed, in a coarse-grained sense, as satisfying
detailed balance. We have proposed that this large-scale
reversibility may be understood in terms of the relevance
or irrelevance of corrections to a Hamiltonian form for
the dynamics. Whether and when such a situation occurs
in more complex situations is a subject for future study.
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